Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2026
-
ShuffleNet is a state-of-the-art light weight convolutional neural network architecture. Its basic operations include group, channelwise convolution and channel shuffling. However, channel shuffling is manually designed on empirical grounds. Mathematically, shuffling is a multiplication by a permutation matrix. In this paper, we propose to automate channel shuffling by learning permutation matrices in network training. We introduce an exact Lipschitz continuous non-convex penalty so that it can be incorporated in the stochastic gradient descent to approximate permutation at high precision. Exact permutations are obtained by simple rounding at the end of training and are used in inference. The resulting network, referred to as AutoShuffleNet, achieved improved classification accuracies on data from CIFAR-10, CIFAR-100 and ImageNet while preserving the inference costs of ShuffleNet. In addition, we found experimentally that the standard convex relaxation of permutation matrices into stochastic matrices leads to poor performance. We prove theoretically the exactness (error bounds) in recovering permutation matrices when our penalty function is zero (very small). We present examples of permutation optimization through graph matching and two-layer neural network models where the loss functions are calculated in closed analytical form. In the examples, convex relaxation failed to capture permutations whereas our penalty succeeded.more » « less
-
We study channel number reduction in combination with weight binarization (1-bit weight precision) to trim a convolutional neural network for a keyword spotting (classification) task. We adopt a group-wise splitting method based on the group Lasso penalty to achieve over 50% channel sparsity while maintaining the network performance within 0.25% accuracy loss. We show an effective three-stage procedure to balance accuracy and sparsity in network training.more » « less
-
It is expensive to compute residual diffusivity in chaotic incompressible flows by solving advection-diffusion equation due to the formation of sharp internal layers in the advection dominated regime. Proper orthogonal decomposition (POD) is a classical method to construct a small number of adaptive orthogonal basis vectors for low cost computation based on snapshots of fully resolved solutions at a particular molecular diffusivity D0* . The quality of POD basis deteriorates if it is applied to D0<< D0* . To improve POD, we adapt a super-resolution generative adversarial deep neural network (SRGAN) to train a nonlinear mapping based on snapshot data at two values of D0* . The mapping models the sharpening effect on internal layers as D0 becomes smaller. We show through numerical experiments that after applying such a mapping to snapshots, the prediction accuracy of residual diffusivity improves considerably that of the standard POD.more » « less
-
A relaxed groupwise splitting method (RGSM) is developed and evaluated for channel pruning of deep neural net- works. Experiments with VGG-16 and ResNet-18 architectures on CIFAR-10/100 image data show that RGSM can achieve much higher channel sparsity than group Lasso method, while keeping comparable accuracy.more » « less
-
We propose a multistage differentiable method to select convolutional channels and construct light neural networks from a heavy network for inference on a subset of a big data set. The selection proceeds backward in layers and utilizes sparse penalty to diversify channel scores. The resulting light network gains sizable accuracy over the baseline heavy network.more » « less
An official website of the United States government

Full Text Available